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How accelerating charges and changing currents
produce electromagnetic waves, how they radiate.



11.2. Point charges: Power Radiated by a Moving Point Charge

The fields of a point charge g in arbitrary motion is (Eqg. 10.65)

B(r,1) = 1,3_ x E(r, 1) The magnetic field of a point charge is
! C ! always perpendicular to the electric field.
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The Poynting vectoris 2 S = —(ExB)= —[E x (2 xE)] = L[Eza:a — (-E)E]
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Consider a huge sphere of radius %, the area of the sphere is proportional to 2?

So any term in S that goes like 1/ will yield a finite answer, but terms like ]/4,3 or 1/¢4 will contribute
nothing in the limit 2 — o0.
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The velocity fields carry erfergy as the charge moves this energy is dragged along, but it's not radiation.
v

Only the acceleration fields represent true radiation (hence their other name, radiation fields):
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Power Radiated by a Point Charge
B(r.r) = %& x E(r, 1)
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If the charge is instantaneously at rest (at time t, ), then u = ¢#, (It is good approximation as long as v « c.)
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where # is the angle between % and a.
No power is radiated in the forward or backward direction-rather,
it is emitted in a donut about the direction of instantaneous acceleration.
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Larmor formula
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The total power radiated is
22 .
Hog-a- f sin
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Liénard’s generalization
of the Larmor formula

P = ﬁ Stad - da =
- 167r2¢
An exact treatment of the case v #= 0 is more difficult. Let’s simply quote the result:
, |vxa s
a” — where y = 1//1 — v2/c2.
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= The factor ) means that the radiated power increases enormously as the velocity approaches the speed of light.
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Comparison: Non-radiated fields and radiated fields from a Point Charge

E(r,1) = d [(c?—v)u+2x (uxa)] whereu=ct—v ]
4wen (2 - u)? / \
E velocity field acceleration field E,.q
non-rad (non-radiation field) (radiation field) E

Note that the velocity fields also do carry energy; they just don't transport it out to infinity.
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11.2.2 Radiation Reaction

N\
Radiation from an accelerating charge carries off energy - resulting in reduction of the particle’s kinetic energy.
- Under a given force, therefore, a charged particle accelerates less than a neutral one of the same mass.
- The radiation evidently exerts a force (F,,,4) back on the charge — recoil (or, radiation reaction) force.

For a nonrelativistic particle (v « ) the total power radiated is given by the Larmor formula (Eq. 11.70):
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Conservation of energy suggests that this is also the rate at which the particle loses energy,

under the influence of the radiation reaction force F,_:
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The energy lost by the particle in any given time interval: [ Fig-vdt = — £od f a“dt
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If the motion is periodic-the velocities and accelerations are identical at t; and t,,
orif v-a=0at t, and t,,

o 3 ol
- Hog~ ., ogqg~= , Abraham-Lorentz formula
L (F““i 67 C a) vdi =0 Frag 677 C a for the radiation reaction force



Radiation Reaction

t2 g 2 2 w
f (Fmd - Hog 5) cvd = Frg = Hogq” . Abraham-Lorentz formula
f bme for the radiation reaction force

For suppose a particle is subject to no external forces (F = 0); then Newton's second law says

2
: 0
a=ma —> a(t)=ape'’’. where T = Hog
b brmc

Frad =

=> In the case of the electron, 7= 6 x 1024 s. - only the time taken for light to travel ~ 10- 1> m

=>» The acceleration spontaneously increases exponentially with time!
- “runaway” under no external force!

If you do apply an external force,

ma=F_ ,+F, F,=7ra = a=ra+— :Abraham-Lorentz equation of motion

m
If an external force is applied to the particle for times t > 0, the equation of motion predicts “preaccelaeration”
before the force is actually applied. = It starts to respond before the force acts!
- “preacceleration” acausalty!

(Problem 11.19) Assume that a particle is subjected to a constant force F, beginning at time t = 0 and
lasting until time T. Show that you can either eliminate the runaway in region (iii) or avoid preacceleration
in region (i), but not both.



Radiation Reaction

Problem 11.19 | If you apply an external force, F, acting on the particle, Newton's second law for a charged particle becor@s

) F 2
a=T1d+ — T = Hog
m bmmc
(b) A particle is subjected to a constant force F, beginning at time t = 0 and lasting until time T.
Find the most general solution a (t) to the equation of motion in each of the three periods: (i)t < 0; (i) 0O <t<T; (iii)) t>T.
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(iii) Same as (i): |a(t) = Ce*/™,

(c) Impose the continuity condition (a) att=0andt=T.
Show that you can either eliminate the runaway in region (iii) or avoid preacceleration in region (i), but not both.

Att=0,A=F/m+B;att=T, F/m+ Be''" =Ce''" = C = (F/m)e™"/" + B.
( [(F/m) + B]e"T, t<0 (d) If you choose to eliminate the runaway,
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T = a(t) = « — lt=T)/r .
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I'o eliminate the runaway in region (iii), we'd need B = —=(F/m)e™ " /";
uncliargel particle
. - 5 i W 3 (no rasdintion reaction)
to avoid preacceleration in region (i), we'd need B = —(F/m). patt) 7/
F /

|:> Obviously, we cannot do both at once. F i ot

S charged particle

= (with radiation reaction)
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Radiation Reaction (J. Jacksons, p.780)

To estimate the range of parameters where radiative effects on reaction are important or not, w
consider the radiative energy of a charge e under an external force to have acceleration a for a period of time T:

For a particle at rest initially a typical energy is its kinetic energy after the period of acceleration:
E, ~m(aT)?

On the other hand, From the Larmor formula the energy radiated is of the order of
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The criterion for the regime where radiative effects are not important can thus be expressed by
H€” 1’
Ew <E, ——> 2@ T<md’T? ————> T>»>-2—
7C 6mc
=> In the case of the electron, 7= 6 x 10-2* s. - only the time taken for light to travel ~ 10> m

=7

=>» Only for phenomena involving such distances or times will we expect radiative effects to play a crucial role.

(ex) If the motion is quasi-periodic with a typical amplitude d and characteristic frequency a,: E, ~ ma)ozd2

The acceleration are typically a ~ @,* d, and the time interval T ~ (1/ay,) :
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=>» If the mechanical time interval is much longer than z, radiative reaction effects will be unimportant.



11.2.3 The Physical Basis of the Radiation Reaction

Conclusion: “The radiation reaction is due to the force of the charge on itself (“self-force”)]
Or, more elaborately, the net force exerted by the fields generated by different parts of the
charge distribution acting on one another.”

Consider a moving charge with an extended charge distribution:
In general, the electromagnetic force of one part (A) on another part (B) is not equal
and opposite to the force of B on A.

Let’s simplify the situation into a “bumble” : the total charge q is divided into two halves separated by a fixed d:

=> In the point limit (d = 0), it must yield the Abraham-Lorentz formula. ¢ g2 (1)

an

The electric field at (1) due to (2) is
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The first term ~ E,
e Hog’a

The second term survives in the "point dumbbell" limitd > 0:  Foay = Tome

This term (x 2) is equal to the radiation reaction force given by the Abraham-Lorentz formula!

= In conclusion, “the radiation reaction is due to the force of the charge on itself (“self-force”).



