
Chapter 11. Radiation

How accelerating charges and changing currents 
produce electromagnetic waves, how they radiate.



11.2. Point charges: Power Radiated by a Moving Point Charge

The fields of a point charge q in arbitrary motion is (Eq. 10.65)

acceleration field
(radiation field?)

velocity field
(nonradiation field?)

The Poynting vector is 

q

Consider a huge sphere of radius   , the area of the sphere is proportional to 

So any term in S that goes like will yield a finite answer, but terms like will contribute 
nothing in the limit

The magnetic field of a point charge is 
always perpendicular to the electric field.

The velocity fields carry energy as the charge moves this energy is dragged along, but it's not radiation.

Only the acceleration fields represent true radiation (hence their other name, radiation fields):



Power Radiated by a Point Charge

q

If the charge is instantaneously at rest (at time tr ),

No power is radiated in the forward or backward direction-rather, 
it is emitted in a donut about the direction of instantaneous acceleration.

The total power radiated is

Larmor formula

(It is good approximation as long as v « c.)

An exact treatment of the case v      0 is more difficult. Let’s simply quote the result:

of the Larmor formula

 The factor 6 means that the radiated power increases enormously as the velocity approaches the speed of light.



Comparison: Non-radiated fields and radiated fields from a Point Charge

acceleration field
(radiation field)

velocity field
(non-radiation field)

v, a: collinear

v, a: collinear

Enon-rad
Erad

a 0, 0 

a 0, 0;  c   

a 0, 0; ~ c  

a 0, 0 

0radE  non radE  

0radE  non radE  

0non radE   radE 

0non radE   radE 

Note that the velocity fields also do carry energy; they just don't transport it out to infinity.



11.2.2  Radiation Reaction

Radiation from an accelerating charge carries off energy  resulting in reduction of the particle’s kinetic energy.
 Under a given force, therefore, a charged particle accelerates less than a neutral one of the same mass. 
 The radiation evidently exerts a force (Frad) back on the charge – recoil (or, radiation reaction) force.

For a nonrelativistic particle (v « c) the total power radiated is given by the Larmor formula (Eq. 11.70):

Conservation of energy suggests that this is also the rate at which the particle loses energy,
under the influence of the radiation reaction force Frad :

(11.77)

0

Abraham-Lorentz formula
for the radiation reaction force

The energy lost by the particle in any given time interval:

If the motion is periodic-the velocities and accelerations are identical at t1 and t2,
or if              at  t1 and t2,0v a 



Radiation Reaction

Abraham-Lorentz formula
for the radiation reaction force

For suppose a particle is subject to no external forces (F = 0); then Newton's second law says

 In the case of the electron,  = 6 x 10-24 s.  only the time taken for light to travel ~ 10-15 m 

 The acceleration spontaneously increases exponentially with time! 
 “runaway” under no external force!

(Problem 11.19 ) Assume that a particle is subjected to a constant force F, beginning at time t = 0 and 
lasting until time T. Show that you can either eliminate the runaway in region (iii) or avoid preacceleration
in region (i), but not both.

,             rad rad
Fma F F F a a a
m

        : Abraham-Lorentz  equation of motion

If you do apply an external force, 

If an external force is applied to the particle for times t > 0, the equation of motion predicts “preaccelaeration” 
before the force is actually applied.  It starts to respond before the force acts! 

 “preacceleration”  acausalty!



Radiation Reaction

Problem 11.19 If you apply an external force, F, acting on the particle, Newton's second law for a charged particle becomes

(b) A particle is subjected to a constant force F, beginning at time t = 0 and lasting until time T. 
Find the most general solution a (t) to the equation of motion in each of the three periods: (i) t < 0; (ii) 0 < t < T; (iii) t > T.

(c) Impose the continuity condition (a) at t = 0 and t = T. 
Show that you can either eliminate the runaway in region (iii) or avoid preacceleration in region (i), but not both.

(d) If you choose to eliminate the runaway,



 In the case of the electron,  = 6 x 10-24 s.  only the time taken for light to travel ~ 10-15 m 

Radiation Reaction (J. Jacksons, p.780)

On the other hand, From the Larmor formula the energy radiated is of the order of 

To estimate the range of parameters where radiative effects on reaction are important or not,
consider the radiative energy of a charge e under an external force to have acceleration a for a period of time T:
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For a particle at rest initially a typical energy is its kinetic energy after the period of acceleration:
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The criterion for the regime where radiative effects are not important can thus be expressed by
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 Only for phenomena involving such distances or times will we expect radiative effects to play a crucial role.

(ex) If the motion is quasi-periodic with a typical amplitude d and characteristic frequency 0: 
2 2

0 0~E m d
The acceleration are typically a ~ 0

2 d, and the time interval T ~ (1/0) :

0radE E  222
0 2 20

0
06
de m d

c
 

 


0

1 ~ T 




 If the mechanical time interval is much longer than , radiative reaction effects will be unimportant.



11.2.3  The Physical Basis of the Radiation Reaction

Conclusion: “The radiation reaction is due to the force of the charge on itself (“self-force”).
Or, more elaborately, the net force exerted by the fields generated by different parts of the 
charge distribution acting on one another.”

Consider a moving charge with an extended charge distribution: 
In general, the electromagnetic force of one part (A) on another part (B) is not equal 
and opposite to the force of B on A.

Let’s simplify the situation into a “bumble” : the total charge q is divided into two halves separated by a fixed d:

 In the point limit (d  0), it must yield the Abraham-Lorentz formula.

The electric field at (1) due to (2) is

The second term survives in the "point dumbbell" limit d  0:

The first term ~ E0

This term (x 2) is equal to the radiation reaction force given by the Abraham-Lorentz formula!

 In conclusion, “the radiation reaction is due to the force of the charge on itself (“self-force”).


